

Égalité

Fraternité

DGA THE FRENCH AEROSPACE LAB

Interaction of shock-waves with a compliant wall

Carmen RIVEIRO MORENO

Doctorante 2 ème année ONERA, Département DAAA (AMES)

<u>Directeur(s) de thèse :</u> Reynald Bur (DAAA/AMES) Olivier Marquet (DAAA/MAPE) <u>Encadrant(s) ONERA :</u> Marie Couliou (DAAA/AMES) Nicolò Fabbiane (DAAA/MSAE) Financement: ONERA/DGA

Introduction

H. T. Pham et al. AIAA 2018³

Introduction

Possible Mechanisms FSI Shock Wave - Soft Material:

Static Deformation^{4,5}

Pressure difference across the shock Lambda shape \rightarrow Drag saving Shock stabilizing effect \rightarrow anchoring front leg

Coupled Dynamics^{1,2}

Vibration modes Damping: out of phase response

Energy absorption

Lambda shock due to deformed thin plate⁴

M. O. Krame Naval Engineering Journal 1960¹ M. Gad-el-Hak Progress in Aerospace Sciences 38 2002² Michela Gramola Journal of Fluids and Structures 2018⁴ Michela Gramola AIAA 2020⁵ Ogawa AIAA 2006⁶

Objective and Steps

"Studying shock wave interaction with a compliant wall to develop a passive control device"

Sartor F. et al. 20157

Objective and Steps

"Studying shock wave interaction with a compliant wall to develop a passive control device"

Sartor F. et al. 20157

I. Shock + Rigid Wall: Setup

S8Ch Meudon

I. Shock + Rigid Wall: Results SPOD

Parameters: 13 Blocks 16384 Samples 50% overlap

- Pure oscillation BL and shock → Independent shock positions
- More energetic oscillations downstream

I. Shock + Rigid Wall: Results Pressure

THE FRENCH AEROSPACE LAB

DGA

THE FRENCH AEROSPACE LAB

- Poisson Coefficient $\nu \rightarrow$ Same range of $\tilde{\Omega}$ values
- Geometry \rightarrow Region of interest Lz/Ly = 0,2 0,4

DGA

Material \rightarrow Elastomer

THE FRENCH AEROSPACE LAB

AR Lx/Ly 1.9, Poisson 0.49

RÉPUBLIQUE

THE FRENCH AEROSPACE LAB

DGA

Bottom Top

1st throat

End Nozzle

500

Х

Conclusion

Shock + Rigid

- Let F Low frequencies \rightarrow Forcing Stagnation Pressure
- II. Medium bump frequencies \rightarrow STBLI
- III. Oscillation shock and BL → Do not depend on shock position
- IV. More energetic oscillations downstream

Compliant Wall

- Linear elasticity \rightarrow First approximation
- I. Elastomer
- II. Viscoelastic model

Future Work

- I. Dynamic Mechanical Analysis \rightarrow Characterization Material (DMAS)
- II. Viscoelastic model
- III. Experimental campaign with compliant wall
- IV. Stability analysis

Digital Image Correlation (DIC) → Dynamic Wall

Schlieren → Dynamic shock

Thank you