Extreme waves in coastal areas: assessment of nonlinear effects induced by an abrupt variation of water depth

Michel Benoit

Laboratoire d'Hydraulique Saint-Venant (Ecole des Ponts ParisTech, EDF R&D) EDF R&D, Laboratoire National d'Hydraulique et Environnment (LNHE) Chatou, France

Jie Zhang, Yuxiang Ma

School of Harbor & Ocean Engineering State Key Lab. of Coastal & Offshore Engineering (SLCOE) Dalian University of Technology (DUT) Dalian, China

michel.benoit@edf.fr

jie.zhang@dlut.edu.cn yuxma@dlut.edu.cn

Introduction – Freak wave characteristics

Definition / criterion

$$\frac{H}{H_s} > 2$$
 or $\frac{\eta_{crest}}{H_s} > 1.25$

(*H_s*: significant wave height)

New Year wave (1st January 1995) at Draupner platform

Return Period – Wave height

Quasi-linear

- 1. Geometrical focusing due wave propagation direction or uneven bottom.
- 2. Space-time focusing due to dispersion.
- 3. Wave-current interaction due to reflection and refraction.

Nonlinear

- 1. Modulational instability due to nonlinear four-wave interactions.
- 2. Wave-bottom interaction due to the enhancement of bound harmonics.
- 3. Space-time focusing due to nonlinear dispersion in shallow water depth.

Experiments – Selected experimental case

Irregular wave experiment: Run 3 in Trulsen et al. (2020)

relative water depth $\mu = k_p h$. steepness $\epsilon = k_p a_c$ Ursell number $U_r = \epsilon/\mu^3$ $a_c = \sqrt{2}\sigma$ $\sigma^2 = \langle (\eta - \langle \eta \rangle)^2 \rangle = m_0$.

Main assumptions:

- {H1} homogeneous fluid of constant density ρ
- {H2} irrotational flow => wave potential $\phi(\underline{x}, z, t)$: $\underline{u}(\underline{x}, z, t) = \nabla \phi$ with $\underline{x} = (x, y)$
- {H3} inviscid fluid
- {H4} non-overturning waves => free surface elevation η is a single-valued function of <u>x</u>.

Introducing the free surface potential

 $\widetilde{\varphi}(\underline{x},t) \equiv \phi(\underline{x},z=\eta(\underline{x},t),t)$

The 2 free-surface BC are written as the so-called **Zakharov equations** for $\eta(\underline{x}, t)$ and $\tilde{\varphi}(\underline{x}, t)$

$$\begin{cases} \frac{\partial \eta}{\partial t} = -\nabla \tilde{\phi} \cdot \nabla \eta + \tilde{w} \left(1 + \left(\nabla \eta \right)^2 \right) \\ \frac{\partial \tilde{\phi}}{\partial t} = -g\eta - \frac{1}{2} \left(\nabla \tilde{\phi} \right)^2 + \frac{1}{2} \tilde{w}^2 \left(1 + \left(\nabla \eta \right)^2 \right) \end{cases}$$

 $\widetilde{w}(\underline{x},t) = \frac{\partial \phi}{\partial z}(z = \eta)$ vertical velocity at the free surface.

Spectral representation of the potential in the vertical => Whispers3D code
Yates & Benoit (2015); Raoult *et al.* (2016); Simon *et al.* (2019); Zhang et al. (2019).

Validation of wave model with Run 3 in TRJR2020

Comparison of the free surface elevation at 16 positions.

Snapshot after running simulations for nearly 90 min of physical time (i.e. after about 4,900 waves).

Black lines: measurements Red lines: simulations

Excellent agreement with measurements with nearly no phase lag!

x = 3.2 m

Michel Benoit, Jie Zhang, Yuxiang Ma

Laboratoire d'Hydraulique Saint-Venant & EDF R&D LNHE

Validation of wave model with Run 3 in TRJR2020

Validation – Statistical distribution of wave height

- Separate individual waves with a zero-crossing method => wave heights H
- Build the empirical Complementary Cumulative Distribution Function (CCDF) of H
- Compare with existing distributions in finite water depth, here with Boccotti (2000) model.

Laboratoire d'Hydraulique Saint-Venant & EDF R&D LNHE 8

Simulation set 2 - Motivation for new tests

Questions: In which area does the depth-variation induced **Non-Equilibrium Dynamics (NED)** exist and influence shallow water waves?

No large scale study yet!

Motivation: Determining the range of out-of-equilibrium sea-states would help to evaluate the risk of freak waves

Summary of wave field parameters

Case	ase H. L. Deepe			eper/shallower area	
	[m]	[m]	μ	ε	Ur
1	0.030	103.6	1.85/0.64	0.037/0.062	0.0058/0.232
2	0.010	43.6	1.85/0.64	0.012/0.020	0.0019/0.077
3	0.015	43.6	1.85/0.64	0.019/0.031	0.0029/0.116
4	0.020	43.6	1.85/0.64	0.025/0.041	0.0039/0.155
5	0.025	43.6	1.85/0.64	0.031/0.052	0.0049/0.194
6	0.030	43.6	1.85/0.64	0.037/0.062	0.0058/0.232
7	0.035	43.6	1.85/0.64	0.043/0.073	0.0068/0.271

^a For all cases, $T_p = 1.1$ s, $\gamma = 3.3$, deeper region depth $h_1 = 0.53$ m, shallower region depth $h_2 = 0.11$ m.

7 cases simulated.

Each case comprises 10 runs with different sets of random phases.

500 s duration for each run

=> about 4,500 waves in total

relative water depth $\mu = k_p h$. steepness $\epsilon = k_p a_c$ Ursell number $U_r = \epsilon/\mu^3$ $a_c = \sqrt{2}\sigma$ $\sigma^2 = \langle (\eta - \langle \eta \rangle)^2 \rangle = m_0$.

Simulation set 2 – Statistical parameters

Case 1 ($H_S = 0.03$ m)

Simulation set 2 – Wave spectrum

Wave non-equilibrium dynamics induced by significant depth change has two phases:

short scale process (intensified freak wave probability + 2nd order harmonics);

2 Long scale process (reduced freak wave probability + broad band spectrum).

Simulation set 2 – Effect of incident wave height

Michel Benoit, Jie Zhang, Yuxiang Ma

Laboratoire d'Hydraulique Saint-Venant & EDF R&D LNHE 13

Simulation set 2 – Effect of incident wave height

Effect of with incident nonlinearity of kurtosis:

- the maximum value in the short scale increases (higher freak wave occurrence prob.),
- but the equilibrium level of does **NOT** increase.

Conclusions

- Performance of whispers3D model was proven excellent in the deterministic simulation of wave trains, for all aspects examined (spectra, statistics, bi-spectra,...), with ability to capture nonlinear wave-wave and wave-bottom interactions.
- Significant depth changes can result in **non-equilibrium dynamics (NED)** under certain circumstances (*kh*_{shallow} >1.3).
- The NED takes effects in two spatial scales, a the short scale $O(L_p)$ and a relatively long scale $O(10^{-10^2} L_p)$.
- In the short scale, the out-of-equilibrium sea-states are characterized by local enhancements of statistical parameters, transient 2nd and higher harmonics, and intensified freak wave probability.
- In the long scale, the statistics changes mildly whereas the spectral shape undergoes strong modulation (broadening around spectral peak), and reduced freak wave probability.
- After re-establishing the new shallow water equilibrium, freak waves are less likely to happen. A "safe zone" is expected, independent of the incident sea-state nonlinearity.

Jie Zhang

Thanks for your attention!

Related publications:

- [1] Zhang, J., Benoit, M., Kimmoun, O., Chabchoub, A., Hsu, H.-C., 2019. Statistics of extreme waves in coastal waters: large scale experiments and advanced numerical simulations. **Fluids,** 4, 99.
- [2] Zhang, J., Benoit, M., 2021. Wave-bottom interaction and extreme wave statistics due to shoaling and de-shoaling of irregular long-crested wave trains over steep seabed changes. Journal of Fluid Mechanics, 912, A28.
- [3] Zhang J., Benoit M., Ma Y. (2022) Equilibration process of out-of-equilibrium sea-states induced by strong depth variation: Evolution of coastal wave spectrum and representative parameters. Coastal Engineering, 174, 104099.
- [4] Zhang J. (2020) Wave-seabed interaction and mechanisms of freak wave formation in coastal zones. PhD thesis, Ecole Centrale Marseille & Irphé. Marseille (France) [http://theses.fr/2020ECDM0003]

